

ökonomische Anwendungen – <u>Steckbriefaufgaben</u> Übersetzungshilfen

Es wird vorausgesetzt, dass die $\underline{\text{Kostenfunktion}}\ K$ eine ganzrationale Funktion vom Grad 3 ist, also

$$K(x) = a x^3 + b x^2 + c x + d$$

Dann können in den Angaben der Aufgabenstellung noch eine Reihe weiterer Funktionen eine Rolle spielen:

;

,	
(Gesamt-)Kosten	Grenzkosten (Ableitung von K)
$K(x) = a x^3 + b x^2 + c x + d$	$K'(x) = 3 a x^2 + 2 b x + c$
(dabei ist d = K _f)	
variable Kosten: $K_v(x) = K(x) - K_f$	Ableitung von K_v
$K_{v}(x) = a x^{3} + b x^{2} + c x$	$K_{v}'(x) = 3 a x^{2} + 2 b x + c$
	(ist dieselbe wie die von K)
<u>variable Stückkosten</u> : $\frac{K_v(x)}{x}$	Ableitung von k_v
$k_{v}(x) = ax^{2} + bx + c$	$k_{v}'(x) = 2 a x + b$
$R_{V}(X) = ax^{2} + bx + c$	(spielt eine Rolle beim Betriebsminimum)
Stückkosten: $\frac{K(x)}{x}$	Ableitung von k
X	$k'(x) = 2 a x + b - \frac{1}{x}$
$k(x) = ax^2 + bx + c + \frac{d}{x}$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(spielt eine Rolle beim Betriebsoptimum)

Seltener tauchen auch Angaben auf, die sich nicht direkt auf die verschiedenen Kostenfunktionen beziehen lassen.

(Wenn das gerade nicht der Fall ist, kann man diesen Teil der Tabelle auslassen.)

<u>Erlös</u>	Grenzerlös
$E(x) = p(x) \cdot x$ = $(mx + n) \cdot x = mx^2 + nx$	E'(x) = 2m x + n
Im Fall eines Polypols ist $m = 0$.	
E ist dann linear, der Graph von E ein Ursprungsgeradenstück.	
Gewinn	Grenzgewinn
G (x) = E (x) - K (x) = $m x^2 + n x - (a x^3 + b x^2 + c x + d)$	G'(x) = -3a x^2 + 2 (m - b) x + n - c
$= -a x^3 + (m - b) x^2 + (n - c) x - d$	

Die folgenden Tabelleneinträge sind voneinander unabhängige "Übersetzungsbeispiele", d.h. die aufgestellten Gleichungen lassen sich nicht zu einem lösbaren Gleichungssystem zusammenfassen.

Text	Übersetzung in	Gleichung(en)
der Stückpreis (Marktpreis, Verkaufspreis je ME) liegt bei 8 GE	p = 8; (<u>Polypol</u>)	E (x) = 8 x
es entstehen <u>Fixkosten</u> in einer Höhe von 200 GE	K _f = 200	d = 200
bei der Produktion von 2 ME betragen die Kosten 910 GE	K (2) = 910	$a \cdot 2^3 + b \cdot 2^2 + c \cdot 2 = 910$ $\Leftrightarrow 8 a + 4 b + 2 c = 910$
bei der Ausbringungsmenge von 10 ME betragen die Grenzkosten 668 GE	K ′(10) = 668	300 a + 20 b + c = 668
bei einer Produktion von 4 ME wird ein maximaler Gewinn von 130 GE erwirtschaftet.	G'(4) = 0; ^G(4) = 130	im Polypol: -48 a - 8 b + p - c = 0; und -64 a - 16 b + 4 p - 4 c - d= 130
das <u>Betriebsminimum</u> liegt bei 11 ME und die kurz- fristige Preisuntergrenze bei 7 GE/ME	k _v '(11) = 0; ^ k _v (11) = 7	22 a + b = 0; 121 a + 11b + c = 7
das <u>Betriebsoptimum</u> liegt bei 3 ME	k '(3) = 0	6 a + b - 1/9 d = 0
bei 5 ME wird Kosten- deckung erzielt (oder: sind die Kosten gedeckt, oder: liegt die Gewinnschwelle oder Gewinngrenze)	K(5) = E(5) bzw. G(5) = 0	im Polypol: 125 a + 25 b + 5 c + d = 5 p oder -125 a - 25 b + 5 p - 5 c - d = 0

Übungen Arbeitsblatt

Links zu ökonomischen Funktionen: hier