

Glossar: Intervall

Intervall [Analysis]

Eine brauchbare Vorstellung für den Anfang ist:

Ein Intervall ist ein Bereich, der alle Zahlen zwischen zwei bestimmten Zahlen umfasst.

Häufig geht es dabei um abgeschlossene Intervalle:

[a ; b] ist die Menge aller (reellen) Zahlen x für die gilt: x ist mindestens a und höchstens b (also a \leq x \leq b).

Beispiel 1: Zum Intervall [2 ; 12] gehört die Zahl 2 und außerdem jede größere Zahl (wie z.B. 2,00001; 2,03; 4 usw.), solange diese nicht größer als 12 ist. Also gehören die Zahlen 8,5 und 12 dazu (man schreibt: $8,5 \in [2; 12]$; $12 \in [2; 12]$),

die Zahlen -2; 1,5 und 12,2 gehören nicht dazu (man schreibt: -2 ∉[2 ; 12]; 1,5 ∉[2 ; 12]; 12,2 ∉[2 ; 12]),

Bei **offenen** Intervallen gehören die obere und untere Grenze nicht dazu:

] a ; b [ist die Menge aller (reellen) Zahlen x für die gilt: x ist größer als a und kleiner als b (also a < x < b).

Beispiel 2: Zum Intervall [-3; $\frac{3}{4}$] gehören -3 und $\frac{3}{4}$ nicht dazu, alle Zahlen dazwischen aber schon.

entsprechend gibt es **halboffene Intervalle**: [a ; b [bzw.] a ; b].

Die genaue **Definition** eines Intervalls geht so: Eine Teilmenge I der reellen (oder rationalen oder ganzen oder natürlichen) Zahlen heißt Intervall, wenn gilt: Liegen a und c in I, so liegt auch jede Zahl b zwischen a und c in I.

Damit gilt: Auch unendlich (∞) und minus unendlich kommen als Intergallgrenzen in Frage:

 $IR =] -\infty$; ∞ [ist ein Intervall,

] -∞; b [, also die Menge aller Zahlen, die kleiner sind als b, ist

ein Intervall,] a ; ∞[;] -∞ ; b] ; [a ; ∞[sind Intervalle