

Glossar: Normalenvektor

Normalenvektor [Lineare Algebra, Vektorrechnung]

zu etwas senkrecht stehender Vektor (orthogonaler Vektor).

Bezeichnung: \vec{n} .

<u>Gerade in der Ebene</u>: Ein \vec{n} ist dann Normalenvektor zu einer Gerade, wenn er senkrecht (<u>orthogonal</u>) zum Richtungsvektor steht.

Beispiel: $\binom{2}{3}$ ist ein Normalenvektor zu $\binom{15}{-10}$, denn beide sind orthogonal zueinander. Das kann man mit dem <u>Skalarprodukt</u> überprüfen: $\binom{15}{-10} \cdot \binom{2}{3} = 15 \cdot 2 + (-10) \cdot 3 = 0$ (Erinnerung: Das <u>Skalarprodukt</u> zweier Vektoren ist genau dann Null, wenn die Vektoren senkrecht zueinander stehen.)

<u>Ebene im Raum</u>: Ein \vec{n} ist dann Normalenvektor zu einer Ebene, wenn er senkrecht zu beiden Richtungsvektoren steht.

Bemerkung 1: Zu einem Vektor, einer Gerade bzw. Ebene gibt es demnach unendlich viele Normalenvektoren: ist \vec{n} ein Normalenvektoren, so ist jeder Vektor mit der selben Richtung (also $t \cdot \vec{n}$ mit $t \in \mathbb{R}$) ebenfalls ein Normalenvektor dazu.

Bestimmung eines Normalvektor in der Ebene: Einen Normalenvektor zu einer Geraden in der Ebene erhält man z.B., indem man beim Richtungsvektor $\vec{r} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$ die Koordinaten vertauscht und bei einer das Vorzeichen ändert: $\vec{n} = \begin{pmatrix} r_2 \\ -r_1 \end{pmatrix}$.

Beispiel: Gegeben ist die Gerade g: $\vec{x} = \binom{2}{3} + t \cdot \binom{3}{4}$. Dann ist ein Normalenvektor $\vec{n} = \binom{-4}{3}$.

Bestimmung eines Normalenvektor im Raum: Um einen Normalenvektor zu einer Ebene im Raum zu bestimmen (gegeben in Parameterdarstellung mit den Richtungsvektoren \vec{v} und \vec{w}), gibt es zwei Möglichkeiten.

1. Möglichkeit: Man betrachtet die beiden Richtungsvektoren

der Ebene und sucht einen Vektor \vec{n} , der zu beiden senkrecht steht.

Man sucht dazu eine Lösung von

$$\vec{v}^* \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = 0$$
 und $\vec{w}^* \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = 0$. Es ergibt sich ein

Gleichungssystem mit drei Gleichungen und zwei Unbekannten:

 $v_1 \cdot n_1 + v_2 \cdot n_2 + v_3 \cdot n_3 = 0 \land w_1 \cdot n_1 + w_2 \cdot n_2 + w_3 \cdot n_3 = 0$ Dazu gibt es unendlich viele Lösungen. Man wählt eine Zahl z.B. für n_1 aus und bestimmt danach die anderen beiden Koordinaten.

<u>2. Möglichkeit</u>: Man bildet das <u>Vektorprodukt</u> der beiden Richtungsvektoren \vec{v} und \vec{w} .

Bemerkung 1:

Mit Hilfe eines Normalenvektors \vec{n} und eines Punktes P kann man eine Ebenengleichung aufstellen: Wenn $\vec{p} = \overrightarrow{OP}$ der Ortsvektor von P ist, geht das so:

Man berechnet das Skalarprokt $\vec{n}^*\vec{n} = c$

Die Gleichung der Ebene ist dann

 $\vec{n}^*\vec{x} = c$

Diese Form der Ebenengleichung nennt man Normalenform.

Zu jeder Gerade bzw. Ebene gibt es unendliche viele Normalenformen: Durch Multiplikation einer Normalenform mit einer beliebigen Zahl außer Null erhält man eine neue.

Bemerkung 3: Ein Sonderfall der Normalenform ist die <u>Hessesche Normalenform</u>, sie ist sozusagen die normierte Form und erleichtert Abstandsberechnugnen.

